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* For example:

* Overfitting in machine learning regression problems:

f:i@xi m="?
i=0

* So,how do we decide which model is to be selected?
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What is model selection @ T

Selecting a|(best) ptatistical model from a set of candidate models, given

data. T

I_goodness of fit |+ |less complexity

Goodness of fit is generally determined using a likelihood ratio approach,
or an approximation of this, leading to a chi-squared test.

The complexity is generally measured by counting the number of
parameters in the model.(simple)

And we need distinguish two goals:

— Find the model that gives the best prediction (without assuming that
any of the models are correct).(AIC, CV)

— Assume one of the models 1s the true model and find the "true"
model.(BIC)
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likelihood ratio test @ T

* Compare the goodness of fit of two models
* based on the likelihood ratio

* Assume there are two models m,, the null one and alternative one m,.The
likelihood ratio is :

De_2n likelihood (m,)
likelihood (m,)

* According to Wilk's theorem,the p.d.fof Dis X * distribution with degrees
of freedom equal to 4, —d,,

j = 2 In(likelihood (m, ) )— 2 In(likelihood (m,))

* So we can determine the p-value of the test.
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* AIC(Akaike Information Criterion)

* Bayes Factor
* BIC(Bayes Information Criterion)
 MDL(Minimum Description Length)

* (Cross-validation
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~ |:Akaike Information Criterion
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* AIC is founded on information theory: it offers a relative estimate of the
information lost when a given model 1s used to represent the process that
generates the data. In doing so, it deals with the trade-off between the
goodness of fit of the model and the complexity of the model.

AIC =2k —21n(L)

e L 1s the maximum value of the likelihood function for the model

* kis the number of estimated parameters in the model.

* the preferred model 1s the one with the minimum AIC value.
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* Itis an unbiased estimate of Kullback—Leibler divergence
* Suppose we have k models where each model 1s a set of densities:

M, :{p(y;ﬁj):é’j e@)j}.

we have data Y,,Y,,...,Y,, drawn from some density . We do not assume that
fis in any of the models.

let &, be the mle from model j. Then an estimate of p based on model j is

Pr i(»)=Pr(»;0,) the quality of Pr ;(¥) as an estimate of f'can be
measured by kl distance:

K(p, i) E [ p() logL Q) ]dy
. p;(»)

\ :IP(J’)logP(y)dy—fp(y)logﬁj(y)dy =K

. A
min Max
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* Intuitively, an estimate of K; 1s :

(;(6;)

n

N o~
Kj=—) logp(Y¥i;0;) =
=1

 However, it is very biased because the data are being used twice:first to
get the mle and second to estimate the integral. Akaike showed that the bias
is approximately di/n where d; = dimension(0;),therefore we use

00, 4 — d;
KJ ](]) ;] K_] J

_ e
 Now ,define
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AIC:How to apply AIC in practice @ N

 Assume there are R candidate models for selection,and their AIC value are
AIC

min_A]Ci AIC]’ Alcz,..., AICR°A]Cmin
* Then e

2
the ith model minimizes the (estimated) information loss.The quality is

can be interpreted as the relative probability that

called relative likelihood of model 1.

* Example:

— 3 models with AIC values are 100, 102, 110. Then the relative
likelithood of the second and third models are

Model 2:exp((100-102)/2)=0.368.

Model 3:exp((100-110)/2)=0.007.
— From further consideration,remove the third model and three strategies.

(1)gather more data to distinguish between the first two models,
(i1)simply conclude data insufficient select from the first two,

(i11)take a weighted average of the first two models, with weights 1 and 0.368.



Data Mining Lab

AIC:Compared to likelihood ratio @ -

If all the models in the candidate set have the same number of parameters,
then using AIC might at first appear to be very similar to using the
likelihood-ratio test.

There are, however, important distinctions. In particular,the likelihood-ratio
test 1s valid only for nested models,whereas AIC (and AICc) has no such
restriction.
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AIC:AlCc(correction) @ R

* AlCc(a kind of formula)

2k(k+1)
n—k—1

AlCc = AIC +

— where n denotes the sample size and & denotes the number of
parameters

—| Model are univariate and linear with normal-distributed residuals.

assumption

e AlICc i1s AIC with a correction for finite sample sizes.
* AlCc s essentially AIC with a greater penalty for extra parameters.
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—_ Bayes Factor
Bayesian Information Criterion
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e Definition:

— Posterior probability
D | M )Pr(M
pr(M | D) = RHRLMPr(M)
Pr(D)
— So we have

Pr(M,| D)/ Pr(D|M,) Pr(M,)
) Pr(D|M,)Pr(M))

Posterior 2dds Bayes' Factor Prior Odds

_Pr(D|M,)) IPr(HI | M) Pr(D|6,M,)d6,
Pr(D|M,) j Pr(6, | M,)Pr(D|6,,M,)db,
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* Example:coin tossing

* Two competing models, one corresponding to a fair coin, and the other a
biased coin.
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Figure 12.1 (a) Discrete prior p (6| M#ir) model of a fair’ coin. A perfectly unbiased coin has & = 0.5, which would
corresponds to a prior §(6, 0.5) — however, we assume a more general form here to illustrate how richer prior
assumptions can be used. (b) Prior p (6| M iaseq) for a biased ‘unfair’ coin. In both cases we are making explicit
choices here about what we consider to be ‘fair’ and ‘unfair’.

p(DIM) = Zp DIo, M)p(01M) = > 6™ (1 —0)"" p(6|M) (12.2.1)
o
= 0.1NH (1—=0.D)" p(6 =0.1|M) 4 --- 4+ 0.9 (1 —0.9)"" p(6 = 0.9|M).
(12.2.2)
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Example 12.1 Discrete parameter space

5 heads and 2 tails Using Ny = 5, Ny = 2 in Equation (12.2.2) we obtain p(D|Mp,,) = 0.00786
and p(D|Mpiasea) = 0.0072. The posterior odds is

p(Myir|D)

=1.09 (12.2.3)
p(Mbiasedlp)

indicating that there is little to choose between the two models.

50 heads and 20 tails For this case, repeating the above calculation, we obtain p(D|My,,) = 1.5 x
10~2° and P(D|Mpigsea) = 1.4 x 10~'°. The posterior odds is

p(Mfairlp)
p(MbiasedID)

= 0.109 (12.2.4)

indicating that we have around 10 times the belief in the biased model as opposed to the fair
model.
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« For a model with parameter vector ¢ ,dim( &)=K,we have data D,then the
model likelihood 1s

Pr(D|M) = [Pr(D|6,M)Pr(6| M)dO
* For a generic expression
Pr(D |60, M)Pr(0| M) = exp(-f(0))

* Mostly, it's difficult to evaluate the integral for large K unless fis of a
particular simple form.

Approximation
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* Laplace's method

Consider a distribution on a continuous variable of the form
|
p(x) = —e E®, (28.2.1)

The Laplace method makes a Gaussian approximation of p(x) based on a local perturbation expan-
sion around a mode x*. First we find the mode numerically, giving

x* = argmin E(x). (28.2.2)

X

Then a Taylor expansion up to second order around this mode gives

E(x) ~ E(x*) 4+ (x —x*) VE|p + % (x —x*) H (x — x¥) (28.2.3)
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where H= VVE(x)|yx is the Hessian evaluated at the mode. At the mode, VE|y- = 0, and an
approximation of the distribution is given by the Gaussian

1 | *\T *
q(x) = ——e 207 HE) = N (x]x*, HY) (28.2.4)
q

which has mean x* and covariance H™!, with Z, = ,/det (2rH~"). We can use the above expansion
to estimate the integral

e E0), [det (2nHY). (28.2.5)
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The Laplace Gaussian fit to a distribution is not necessarily the ‘best’ Gaussian approximation. As
we’ll see below, other criteria, such as those based on minimal KL divergence between p(x) and a
Gaussian approximation may be more appropriate, depending on the context. A benefit of Laplace’s
method is its relative simplicity compared with other approximate inference techniques.
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So we can approximate the model likelihood with a gaussian distribution

logPr(D | M) =

logPr(D |6 ,M)+1logPr(6" | M) +%log det(27H™)

where
0" =argmax Pr(D|6,M)Pr(6| M)
and H is the Hessianeof
f(0)=—-1logPr(D|6,M)Pr(8| M)

evaluated at 0%
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A simpler version of laplace's method

laplace approximation:

logPr(D | M) =logPr(D | 6’*,M) +log Pr(6?* | M)+ %log det(2sz_1 )|

510gdet(27zH | —logdet(Zﬂ—IK)— log(—) 510g27z—§10gN

SO0 logPr(D|M)=logPr(D|60°,M)+[logPr(8" | M +510g27z—§10gN

* More simpler: assume Pr = N(4]0,I)

logPr(8" | M) =log ; 1 exp{—l(ﬁ*)TlKH*} = —%(9*)T g -—glog 2

(27)? |1 |2

. K
Finally we get BIC: BIC =logPr(D |6 ,M)- Y log N
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Summary about BIC @ T

* Bayes' rule enables us to evaluate models based on how well they fit the
data via the model likelihood.

* There is no need to explicitly penalise 'complex' models in the Bayesian
approach since it automatically oncorporates an Occam's razor effect due to
the integral over the posterior parameter distribution.

* Computing the model likelihood can be a complex task. In continuous
parameter models, Laplace's method provides a simple approximation, the
BIC being a cruder version of Laplace's approximation.

* Assessing performance on the basis of a limited amount of data can be
achieved using simple Bayesian hyperthesis testing.
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 The basic idea:

— The goal of statistical inference may be cast as trying to find regularity
in the data. 'Regularity’ may be identified with 'ability to compress'.
MDL combines these two insights by viewing learning as data
compression: it tells us that, for a given set of hypotheses H and data
set D, we should try to find the hypothesis or combination of
hypotheses in H that compresses D most.

00010001000100010001 ... 0001000100010001000100010001 (1.1)
01110100110100100110 ... 1010111010111011000101100010 (1.2)
00011000001010100000 ... 0010001000010000001000110000 (1.3)

* So MDL has some following properties:

for i = 1 to 2500; print ‘0001‘; next; halt

— Occam's Razor
. . print ‘011101001101000010101010........ 1010111010111011000101100010°; halt

— No overfitting, automatically

— Bayesian interpretation

— No need for 'underlying truth'

— Predictive interpretation
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Kolmogorov complexity and Ideal MDL @ —

* Kolmogorov complexity

— the length of the shortest program that prints the sequence and then
halts.

— the lower, the more regular.
— leading to an 1dealized version of MDL
* Uncomputability

 Arbitrariness/dependence on syntax
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MDL and Model Selection @ T

* Hypotheses VS. models

— we use the phrase point hypothsis to refer to a single probability
distribution or function.also known as simple hypothesis

— we use the word model to refer to a family(set) of probability
distribution or functions with same functional form.Also known as
composite hypothesis.

- An example hypothesis

Figure 1.1: A simple, a complex and a trade-off (3rd degree) polynomial.
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MDL and Model Selection @ T

* Hypothesis selection:

— if we are interested in selecting both the degree of a polynomial and the
corresponding parameters;

e Model selection problem:

— if we are mainly interested in selecting the degree.

Crude®, Two-part Version of MDL Principle (Informally Stated)

Let H1), H®), ... be a list of candidate models (e.g., H®) is the set of k-th degree
polynomials), each containing a set of point hypotheses (e.g., individual polynomi-
als). The best point hypothesis H € HD UHBP U... to explain the data D is the
one which minimizes the sum L(H) + L(D|H), where

e L(H) is the length, in bits, of the description of the hypothesis; and

e L(D|H) is the length, in bits, of the description of the data when encoded
with the help of the hypothesis.

The best model to explain D is the smallest model containing the selected H.
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* Hold out method
— split dataset into two groups
* training set:used to train the classifier

e test set:used to estimate the error rate of the trained classifier.

Total number of examples
< >

Training Set Test Set

e (Cross-validation
— Random Subsampling
— K-Fold Cross-Validation

— Leave-one-out Cross-Validation
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* Random Subsampling

= Random Subsampling performs K data splits of the dataset
e Each split randomly selects a (fixed) no. examples without replacement

e For each data split we retrain the classifier from scratch with the training
examples and estimate E; with the test examples

Total number of examples
<

i i Test example

Experiment 1

Experiment 2

Experiment 3

= The true error estimate is obtained as the average of the
separate estimates E;

¢ This estimate is significantly better than the holdout estimate

et S
- g 2F
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 K-Fold Cross-Validation

n Create a K-fold partition of the the dataset

e For each of K experiments, use K-1 folds for training and the remaining
one for testing
Total number of examples

Experiment 1

Experiment 2

Experiment 3

/ Test examples
Experiment 4

= K-Fold Cross validation is similar to Random Subsampling

e The advantage of K-Fold Cross validation is that all the examples in the
dataset are eventually used for both training and testing

m As before, the true error is estimated as the average error rate

1 K
EZRZ‘Ei
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e Leave-one-out Cross-Validation

= Leave-one-out is the degenerate case of K-Fold Cross
Validation, where K is chosen as the total number of examples

e For a dataset with N examples, perform N experiments

e For each experiment use N-1 examples for training and the remaining
example for testing

Total number of examples
<+ >

Experiment 1

Experiment 2

Experiment 3

Single test example

Experiment N

m As usual, the true error is estimated as the average error rate on

test examples v

1
E_EZEi

i=1
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* Deviance information criterion

* False discovery rate

* Focused information criterion

e Mallows's Cp

*  Minimum message length (Algorithmic information theory)
e Structural Risk Minimization

* Stepwise regression
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